
Bring NDT Back:
Measurement Lab Modernizes NDT Server

Chris Ritzo critzo@measurementlab.net
Matt Mathis mattmathis@measurementlab.net

@measurementlab @chrisritzo

@

mailto:critzo@measurementlab.net
mailto:mattmathis@measurementlab.net

NDT History @

● Single stream TCP performance test developed at Internet2
● Used the web100 kernel module for collecting tcp statistics
● Included in perfSONAR until version 4.0 release

● M-Lab 1.0 continued to use NDT on our PlanetLab-based stack
○ vservers + Princeton-run api and bootserver + lots of custom tools
○ Old and floating south on an iceberg

● Required much manual patching, made ops a technical nightmare
● perfSONAR made a solid choice - chuck NDT and move on
● M-Lab was more dependent on NDT

@

M-Lab NDT Servers - Endpoints
for measuring the public internet

1st NDT Test

200,000,000 NDT Tests

1 Billion Rows in
NDT Table

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

2 Billion Rows in
NDT Table

Digging out of the technical debt
@In 2017, the M-Lab team began work to upgrade the platform to

adopt modern and flexible system administration components.

custom-compiled version of Linux
2.6.32 with patches required for
vserver containers and Web100,
monitored via Nagios

Kubernetes (k8s) cluster,
managing docker containers with
standard tools & a few custom
tools, monitored via Prometheus

Original NDT server that used
web100:

https://github.com/ndt-project/ndt/

Complete rewrite in golang that
uses TCP_INFO:

https://github.com/m-lab/ndt-server

TL;DR: ndt-server can now be run using Docker, with tcp_info, traceroute, uuid, and
packet-header capture “sidecar” services containers on Linux systems with
kernel version >= 5.2

Original / New NDT Differences
@

Original NDT server New NDT server

● ndt5 protocol
○ Backward compatible
○ Original ports supported:

3001, 3010, 32768-65535
○ Default to Cubic TCP comp.

● ndt7 protocol
○ BBR TCP, Cubic fall back
○ TLS port 443, websockets

● Supported reference clients:
JavaScript, Golang, C++11

● Community clients: Android, iOS

● Reno TCP Congestion Control
default

● web100 for TCP statistics
● Required bidirectional ports:

○ 3001 (http)
○ 3010 (https)
○ 32768-65535 Randomly

assigned ephemeral range
port assigned by server for
client tests

Collaborating with perfSONAR
Community @

● M-Lab is collaborating with perfSONAR to share ndt-server with the community
● Testing ndt-server with perfSONAR v4.0 CentOS release found:

○ perfSONAR
■ ships with kernel 3.10.0-957.27.2.el7.x86_64
■ Basic tests confirm that perfSONAR seems to work fine after kernel upgrade to

5.2.13-1.el7.elrepo.x86_64
■ With the kernel upgrade + docker, ndt-server can be run, but not concurrently with the

perfSONAR httpd process
○ ndt-server

■ requires at least the 4.19.x LTS kernel + BBR 1.0 - (current M-Lab production)
■ BBR is still being updated, version 2.0 is a kernel module for kernels 5.2+, targeting

5.4 LTS, when it’s ready
● Adding the new ndt-server into perfSONAR will be a long-term path
● But running your own ndt-server is possible now, on a separate box from perfSONAR

Test drive your own ndt-server @
On a Linux machine with docker & updated kernel, run:

docker run --net=host measurementlab/ndt

Then point your browser to:
ndt5 (original proto, http) http://localhost:3001/static/widget.html
ndt5 (original proto, TLS) https://localhost:3010/static/widget.html
ndt7 https://localhost/static/ndt7.html

Everyone’s environment will be different, and the example above is super basic.

Full Stack Demo - ndt-server @
docker run -d -u 0

--network=host
--volume `pwd`/certs:/certs
--volume `pwd`/datadir:/var/spool/ndt
--volume `pwd`/var-local:/var/local
--read-only --user `id -u`:`id -g`
--cap-drop=all

measurementlab/ndt
-cert /certs/cert.pem -key
/certs/key.pem -datadir /var/spool/ndt
-ndt5_addr 192.168.10.10:3001
-ndt5_wss_addr 192.168.10.10:3010
-ndt7_addr 192.168.10.10:4443

NDT's Origin revisited
● "Bulk Transport Capacity" metric as defined in [RFC 3148]

○ Test with (what was) state-of-the-art TCP
○ Instrument everything, including: web100, app performance, dispersion and full packet capture
○ Display all metrics and models derived from the metrics in the meta report
○ Enable the "user" to decide which models are important or relevant on a case-by-case basis

■ User education was an explicit goal

● But NDT fell behind in a number of ways
○ Gradual focus on raw performance and erosion of other metrics, models and understanding
○ TCP implementations are now out of date and not representative of modern stacks
○ Standard TCP (and CUBIC) is out of scale for most of the Internet

■ It has been out of scale for HPC networking/Internet 2 for nearly two decades

@

TCP Cubic & Reno are out-of-scale
● Long standing well known problem

○ One of my focus areas for more than two decades (since 1997)
○ Previous known solutions (e.g. FAST TCP) have all failed to deploy at scale

■ All are brittle in some contexts and are not safe for unsupervised wide use
■ Most are shipped with linux and can be installed by experts as modules

● ISPs complain about NDT results
○ Want "multi stream NDT" and other changes
○ Multi-stream is really a workaround for TCP scaling issues

■ In the transport research community this is viewed as "cheating congestion control"
■ By definition this is not a "Bulk Transport Metric"

@

Addressing the real problem
● Core assumptions baked into Van Jacobson's landmark paper [1988]

○ VJ88 is the foundation of nearly three decades of congestion control research
○ Key principles: packet conservation and self clock
○ Unsuitable for short queue, high speed networks

■ Not enough queue space to provide a good clock for sending data
■ Self clock is intrinsically brittle in modern short queue networks

● BBR TCP finally overcomes downsides of pacing at scale
○ It is built on new core assumptions: explicitly model the network (Max_BW and min_RTT)
○ Mostly pace traffic at measured Max_BW

■ Packet transmissions are timer triggered (not by ACKs)
○ Pacing rate is dithered to update (measure) model parameters
○ See: [Cardwell et. al. "BBR: congestion based congestion control", Comm ACM 2017]

@

BBR Features
● You are already using it for YouTube and Google search

○ BBR solves real problems for Google
○ Several other content providers are known to be experimenting with it

■ Netflix is making good progress on a BSD port
■ Because it solves some of their problems too

● It is not done yet: the present is still a moving target
○ The version currently running on MLab (v1) has well documented bugs

■ Grossly unfair to CUBIC under some conditions (Can starve CUBIC)
■ Performs poorly over some links that batch ACKs (including WiFi with short RTTs)

○ BBRv2 is in the wings (next slide)

● MLab will re-evaluate BBR in 5.4 LTS when it propagates into CoreOS

@

BBRv2
● Not upstream yet

○ Easily built kernel module

● Includes a built in CUBIC compatibility mode
○ Prevents BBR from starving CUBIC

● RISK to Internet 2 community
○ CUBIC compatibility recreates some of CUBIC's lameness in future versions of BBR
○ What will happen if BBRv3 (w/o cubic compatibility) starves BBRv2?

@

NDT's roots, with a new twist
● The new platform uses docker

○ Think "Ultra lightweight virtual machine"

● (Nearly) fully decouples NDT from the kernel and the rest of userland
○ OS has to be new enough to run docker
○ TCP_INFO coverage and precise CC version depend on OS version

■ But NDT doesn't care (much)

@

Dockerized NDT
● All present and future version of Dockerized NDT will run on ANY reasonably

modern Linux
○ e.g. Linux 3.10 and later

● Caveats:
○ Network and clocks have to be good enough
○ Do some minimal functional and calibration testing
○ Linux between 3.10 and 4.19 will be missing a few TCP_INFO instruments

■ But the rest of the NDT should work just fine

@

Bring NDT Back:
Measurement Lab Modernizes NDT Server

Chris Ritzo critzo@measurementlab.net
Matt Mathis mattmathis@measurementlab.net

@measurementlab @chrisritzo

@

mailto:critzo@measurementlab.net
mailto:mattmathis@measurementlab.net

