A SECURE SDN SCIENCE DMZ

Yuri Kolomiyets
Solutions Architect, Corsa Technology
A Secure SDN Science DMZ

CONTENTS

• The Approach
• The Setup
• The Trial
A Secure SDN Science DMZ – The Goal

• Looking for a Science DMZ design that is
 – Easy to understand
 – Relatively easy to deploy
 – Without compromising security (i.e., keeps the CISO happy), and
 – Enhances data transfer performance
A Secure SDN Science DMZ – The Approach

• Add an SDN Science DMZ Gateway

• Don't change the (logical) topology
 – Maintain existing IP peering relationships
 – Maintain the traffic pattern that secures the campus network

• Configure static L2 connections
 – SDN gateway acts as "bump in the wire"
 – Or two bumps
 – No change to routing topology
A Secure SDN Science DMZ – Selective Routing

• Improve throughput for high volume data transfers
 – Selectively route authorized data transfer flows directly to the DMZ
 – Bypass border router and firewall

• SDN datapath controls
 – Recognize authorized data transfer flows and install per-flow routing
 – Packet headers rewritten as though they passed through router/firewall
A Secure SDN Science DMZ – The Approach (alternate)

- Add an SDN Science DMZ Gateway
- Don't change the (logical) topology
 - Maintain existing IP peering relationships
 - Maintain the traffic pattern that secures the campus network
- Configure static L2 connections
 - SDN gateway acts as "bump in the wire"
 - Similar to SciPass developed at IU, but without the IDS load balancer
A Secure SDN Science DMZ – Authorizing Flows

- Recognize authorized data transfers
 - Method depends on policy
 - Learn flows using DTN source address
 - Recognize transfer control protocol
 - Integrate with transfer control system

- Globus/gridftp integration
 - Callout functions at key points in data transfer process, for example
 - post_connect() or post_accept() – install bypass flows
 - post_close() - remove bypass flows
Setting up an SDN Science DMZ

Goal: Provide configuration guidance and automate as much as possible

- Switch installation, cabling and commissioning (as usual)
- Configuration of DTNs
 - As usual, plus (optional) configuration of VLAN interfaces
- Install and start SDN Controller
 - Configure interface/VID roles (WAN, Campus WAN-side, Campus DMZ-side, DMZ)
 - Controller provisions baseline connectivity (e.g., VLAN connections)
 - Configure secure connectivity to DTNs (e.g., for Globus integration)
- SDN Operation
 - Automated selective routing for authorized data transfers
 - Potential for coordination with other SDN Controllers (e.g., OESS)
Setting up an SDN Science DMZ – Extras

As with many networking solutions, there are opportunities for enhancement

• Potential for BGP integration if there are multiple routes to WAN

• Integration with fault recovery strategies
 – "Bump in the wire" approach intended to simplify this, but…
 – There may be benefit in other approaches

• Integration with OESS to use dynamic AL2S circuits
The Trial

Goal: Investigate SDN Science DMZ configuration and performance

• We are setting up SDN switches, with attached DTNs, on three campuses
 – University of Utah (Joe Breen)
 – Florida International University (Jeronimo Bezera)
 – Indiana University (Uwe Dahlmann)

• Develop and test configuration automation
• Evaluate effectiveness of traffic management tools (e.g., flow shaping)
• Testbed for software integration
Trial Configuration

• DTN configuration
 – Internet2 CentOS image
 – Ansible playbook for additional configuration (Globus, VLAN subinterfaces)

• Switch configuration
 – Corsa SDX pipeline with flow entries implementing default L2 connectivity
 – Simple Ryu controller to capture performance data (on-switch VM)

• Internet2 configuration
 – Utah-to-FIU AL2S connections to test high volume transfer performance and traffic management
 – Loopbacks for testing campus connectivity to Internet2 (regional network)
Trials (and tribulations)

• Baseline testing
 – Ansible playbooks to do local campus testing and end-to-end testing
 – Initial tests being done with bwctl/iperf3
 – Loading measurement data into InfluxDB, viewing with Grafana

• Working toward a stable baseline
 – Default DTN configuration achieves roughly 2.5Gbps transfer rate with 60ms RTT
 – Challenge to achieve this performance in both directions between Utah and FIU
 – Challenge to test campus to Internet2 (AL2S loopback problems)
Trials (and tribulations)

Fairly clean transfer Utah-to-FIU, but negligible rate FIU-to-Utah

Negligible rate Utah-to-FIU, choppy transfer rate FIU-to-Utah
Trials (and tribulations)

• Local test between DTNs at one campus
 – Stable transfer rate

• Same campus test looped at Internet2
 – Packet retransmission every few sec
 – What is causing this?
The Ongoing Trial

Goal: Investigate SDN Science DMZ configuration and performance

• Upgrade campus switches
 – More comprehensive measurement capabilities
 – More advanced traffic management functions

• Develop and test configuration automation
• Evaluate effectiveness of traffic management tools (e.g., flow shaping)
• Testbed for software integration