Deploy International OpenFlow/SDN Testbed with Delegation and Data Awareness in Mind

Shu Huang shuang@renci.org
What we expect from the Testbed

• **Support nested virtualization**
 – Provide just enough functions and leave deployment choice open

• **Users can bring in their own devices: ‘alien’ controllers**

• **Offer heterogeneous network services (QoS, resiliency, virtual networks) across many providers/domains**

• **Separate resource management from provisioning**
 – Split off coordination of resource allocation on long term scale from short-term provisioning
Delegation vs. Virtualization

• Things FlowVisor can not do well:
 – Virtual topology management

 – Address Management
 • Virtualization users share the same address space without knowing the existence of other users
 • Address Management resolves collisions
Implementing virtual networks using SDN

• Requirements:
 – Provide multi-tenancy with isolation (logical and performance-based) and explicit **programmable** control
 – In order to provide performance isolation network resources must be **accountable**.
 – Provide access for **customer** controllers to virtualized infrastructure.

• Two ways
 A. Use packet header ‘shims’ not controlled by tenants to separate one tenant from the other
 B. Make the tenant explicitly aware of the label spaces they control

• The difference is the tradeoff in awareness of the infrastructure vs. privacy/simplicity
 – Delegation exposes the network resources and constraints while Virtualization hides them
 – A typically means the shim header is fixed
 • What if VLAN header is used as the shim but the user wants to work on VLANs?
 – If you can do B, you can do A
Treat it as a resource management problem

- Each connection occupies some label space that is implicitly given to it by the domain owner
- Labels, bandwidth, flow spaces are all allocatable resources
- These resources represent *volumes* in discrete spaces
- A *delegation* of these resources represents a partition of the original volume
- An owner (e.g. controller) of a volume should be able to operate on packets within it and be assured that no one else is operating within it
- An owner of a volume should be able to further partition it to create a sub-delegation
Architecture for the delegation framework
Graph Models

- Graph DB and property graphs
 - Vertex and edge attributes
 - Can be translated to RDF and vice versa
- Port mode vs. Node mode
 - Virtualization has problems – is a big virtual switch non-blocking?

User request:
need 2 labels between switches A and E vs. need 2 labels Between ports A.1 and E.1
The Problem Formulation

• **Constraints:**
 – Connectivity
 – Resource availability (labels)
 – Label translation capability
 – QoS future work: Outgoing bandwidth, Buffer space, Flow table space

• **Objectives:**
 – Label usage
 – Port usage
 – Load balance

• **ILP and heuristics**
Data Awareness in SDN (1)

• More on labels
 – Generalize VLANs, MAC addresses, IP addresses, can be MPLS labels, time slots, wavelengths, etc
 – Does not have to be contiguous: Interpretation only matters at peering points between dissimilar providers.
 – SDN does not have to have layers!

• Future Internet Architecture (FIA)
 – Data is the first citizen
 – Data grids and networks are emerging (we believe)
Data Awareness in SDN (2)

• Move compute and storage resources from edge to the core of network
 – In-network storage and processing

• Networking, storage and compute resources management should work together
Data Awareness in SDN (3)

• Taking advantages of the data awareness in SDN
 – Optimized data movement
 – Data caching/processing
 – Parallel data transfer
 – P2P-like data transfer
 – …