Software Defined Exchanges: The new SDN?

Inder Monga
Chief Technologist
Energy Sciences Network
Exchange: Telephone Exchanges

Circuit switching at 64kbps
(manual or automatic)
Exchange: Internet Exchange Point

- IP Traffic (L3) is exchanged
- VLANs used for plumbing
Exchange: GLIF Open Exchange Point (GOLE)

- Packet Traffic is exchanged
- Not necessary for it to be IP
- L2 usually
Exchange: Software-Defined Exchange?

March 2013

ESnet FLA (AS 3434)

VANDERVECKEN (VM)

eth1
192.168.1.2/24

fla-otb-rt1 (Pica8)

eth0
192.168.1.106/24

Port 2 (VLAN ??)
[192.168.37.2/30]
(Peers w/ ESnet)

Port 1 (VLAN 3801)
[192.168.37.6/30]
(Peers w/ REANNZ FLA)

2x 10GE (Data-plane)

Treehouse Project
(REANNZ/ESnet/Google)

April 2013

SDX: A Software Defined Internet Exchange

Nick Feamster†, Jennifer Rexford*, Scott Shenker†, Dave Levin*, Russ Clark†, Josh Bailey*

* Google, † Georgia Tech, © University of Maryland, * Princeton University, † UC Berkeley

December 2013

Operationalizing SDN: A multi-agency program review

August 2014

SDX: A Software Defined Internet Exchange

Arpit Gupta†, Laurent Vanbever*, Muhammad Shahbaz†
Sean P. Donovan†, Brandon Schlinker†, Nick Feamster†, Jennifer Rexford*
Scott Shenker®, Russ Clark†, Ethan Katz-Bassett†

†Georgia Tech *Princeton University ©UC Berkeley †Univ. of Southern California
Exchange: Software-Defined Exchange?

2. An initial focus is needed on operational SDN deployments including Software-Defined Exchanges (SDXs) to enable interoperability and use of these new approaches with the current Internet infrastructure. Initially, these efforts should be focused on defining the architectures/implementations that will support operational multi-domain SDNs; experimenting with these designs and iterating as necessary; encouraging the development and deployment of next-generation instruments and applications made possible by this infrastructure; growing the community of multi-SDN aware engineers, researchers, and students; and preparing for transition to an operational phase.
Exchange: Software-Defined Exchange?

NSF’s 2014 IRNC solicitation looked to fund SDX concepts

Proposals were due – July 7th, 2014

NSF is interested in supporting the continued research, development, experimental deployment and trialing of multi-domain SDN at a national and international scale. While not required, proposals in this area have an opportunity to propose the design and operation of a Software Defined Exchange (SDX) serving to interconnect SDN peers and connecting customers to these interconnecting SDNs.
What is a ‘Software-Defined Exchange’?

- SDX =
 - New way to build an Internet Exchange Point (IXP)
 - New way to build a Layer 2 GOLE
 - New approach for multi-domain services
 - New approach to SDI/Network Functions Virtualization

- ΣSDX = New way of building software-defined networks?
SDX for Layer 3

- How does one do routing with SDN?
 - Routing is an embedded function
 - Depends on reachability and topology (next-hop)

- SDN – separating control from data plane
 - Pull IP routing stack out of the network element
 - Leave forwarding decision in the network element

- RouteFlow – an approach to build BGP in the controller
 - Create a virtual model of the router in the controller
 - Forward BGP update packets to the virtual interface
 - Compute BGP route tables (RIB and FIB) based on virtual model
 - Translate FIB into Flow Tables based on real switch model
 - Install Flow Tables in the data plane
Building an Internet Exchange Point

• Build a SDN-based Router
 – Vandevecken Code based on RouteFlow (higher performance, simpler, 1.3 capable)
 – Documentation: http://goo.gl/IJRGHM
 – Code: http://goo.gl/IG6ELj

• Build peering fabric based on dynamic SDN policies (rather than static network constructs)

• Use SDN rules to scrub bad behavior*
 – Deal with Router hygiene issues (default deny instead of default allow).
 – Deal with “Capacity Theft” issues (as well as “noise” traffic)

* From Jamie Baddeley, Citylink, NZNOG
SDX for Layer 2 and multi-domain

- Mature set of L2 multi-domain technologies in R&E networks
 - NSI (protocol for multi-domain)
 - OSCARS
 - OESS
 - G-Lambda
 - AutoBAHN
- Functions include
 - L2 Traffic Engineering, using MPLS or other equivalent technologies
 - VLAN negotiation and translation, for end-to-end connectivity
 - QoS support, missing in most, but really important when supporting multiple peerings/port
- SDN networks are designed as islands
 - Nothing in SDN/OF set of protocols that help inter-domain
SDXs cannot run without Servers and Storage

- Layer 3 SDX needs route servers, policy servers, OpenFlow controller, and (depending on the implementation), BGP speakers

- Layer 2 SDX needs NSI server, performance monitoring tools, and perhaps topology server

- SDN SDX needs an OpenFlow controller, policy database, and performance monitoring tools
From SDX → Software Defined Infrastructure (SDI)

- Once packets are being exchanged, why not offer above-the-network services?

 - SDX’s become a NFV marketplace
 - Compute, Storage and Network services offered at the exchanges
 - GENI software can be leveraged to do resource management of VM’s, storage on a network slice

- User collaborations can allocate services based on their requirements
Abstracting SDX – what are the common functions?

- A place where peering domains come together
- Peering domains need not be physically connected
- Supports establishment of inter-domain connectivity/routing
- A broker of inter-domain and inter-SRP trust
- Each SDX defines its rules of engagement
- Enforcer of individual domain policies but not itself a policy definer (with exceptions)
- Marketplace for Software Defined Services (SDS) can be built as a SDX overlay
 - For example, an application-specific exchange (a video marketplace)
- Resources may be virtual or physical
Multi-domain SDXs*

Today: “SDN islands”
GENI slices & VLAN stitching help point the way

Next Step: Add SDX’s
Build a “Rev 0” control plane, run native next-gen apps and scientific instruments spanning multi-domain SDNs
SDX equivalent to a ‘bazaar’
The ‘Bazaar’ model of SDX

- Imagine there are no private peerings
- SDN networks are just on-ramps to access the SDX services
- End-user applications ‘service-chain’ SDXs to get end-to-end services

This SDX model is equivalent to the ‘cloud’ but for networking, where startup companies like Netflix do not have to build a global network infrastructure to provide differentiated content services worldwide.
Summary

• Software Defined Exchange model is new, hence free for re-imagining the new architectures

• Layerless Networks
 – Today’s networks have clearly defined layers (e.g. L1-L3)
 – SDX (and SDN) are blurring the lines between the layers, and their control

• Services Exchange
 – Networks generally just provide connectivity
 – SDX based future networks will incorporate additional services to enhance the user experience

• Virtualization
 – No need to own global infrastructures (like the carrier’s today) since policies can be applied safely on multi-tenant SDX infrastructure
Questions?

imonga [at] es [dot] net

www.es.net, my.es.net, fasterdata.es.net