Building the perfect R&E network.

Rob Evans
Janet
Internet2 Technical Exchange, Oct 2014
• Years of
 – Requirements gathering
 • Workshops
 • Capacity planning &c
 – Government engagement (funding)
 – Procurement
 • Competitive dialogue
 – Building
 – Migration
• Dark fibre
• Coherent optical
• Lots of 100GE
• Ethernet over MPLS
• No OTN switching
• Pretty good, but not the perfect NREN.

Photo from https://www.flickr.com/photos/aldaron/536362686
What do I mean by ‘perfect?’

• A network based on all user requirements, now and for the foreseeable future?
• A network built without making any compromises?
• A network that achieves the right balance between cost, management and features?

“having all the required or desirable elements, qualities, or characteristics; as good as it is possible to be”
What is a perfect NREN?

• High capacity IP provisioning
 – Flexible, statistically multiplexed packet switching
 – Cope with peaks in demand
 • Demanding users
 • Media events

• Rapidly provisioned circuits
 – No bandwidth guarantees, but not congested

• Rapid provision of dedicated bandwidth
 – Mbps, Gbps and many Gbps

• Reliable
 – Multiple failures!

• Meet the needs of production and network research
How might that network be built?

- Dark fibre
- Optical layer
- Switched layer
- Routed layer
- Network management
 - Rapid build of new bandwidth
 - Automated provisioning
 - Network intelligence
Dark fibre

• Do you need it?
 – Good for high capacity
 – Visibility of underlying network
 – Requires a long-term contract
 – Circuits allow a telco to share fibre
 • Cheaper if you don’t need capacity
 – Optical spectrum sharing alternative?

• Can you get it?
 – Fibre market in UK is fairly limited, what’s it like elsewhere?
 – ‘Fibre glut’ of early 2000s is history
 • Telcos driving existing fibre harder rather than laying new fibre

• Will you always be able to get it?
 – Unless new fibre is laid, market is unlikely to open up
 • Telcos prefer to sell services, need to be in a strong position to buy fibre.
 – Will you be able to expand a dark fibre network in five years?

Photo from https://www.flickr.com/photos/98640399@N08/9287370881
Dark fibre

- How much of a mesh?
 - Many routes creates a resilient network
 - More degrees required on ROADM
 - How do you use all the fibre?
 - Switching and protection at the optical layer?
 - Provision IP paths over all the directions?
 - Lots of router ports!
 - Complex IGP topology
 - Simpler may be better
Optical layer

• How ‘reconfigurable’ do your ROADMs need to be?
 – Less is more
 – Colourless
 – Directionless
 – Contentionless
 – Gridless
 • MEMS or LCOS
• Capacity requirements
 – Are you going to be using a large number of the 88 (96?) channels?
 – Will you want to dynamically reroute wavelengths around the network?
• Where are you building resilience?
 – Protected optical circuits, or at the IP layer?
 – WSSs won’t reroute circuits instantly.
Optical layer

• Coherent
 – Offers 40G and 100G over long distances
 – Single 10G across an uncompensated network can be expensive

• Thick or thin?
 – Transponders in the optical equipment, ‘grey’ light to the routers
 – OTN optics in the routers
 • Several years behind the optical vendors
 • Coherent requires a lot of DSP
 – Penalty of ‘grey’ light optics and OEO
 • Especially with the cost of 100GE optics
Which circuits to offer higher layers?

• 100GE is a lot of traffic to fail in one go
 – 100GBASE-LR4 optics are still expensive, but use normal single-mode fibre.
 – 100GBASE-SR10 are cheaper but require special cabling (multi-core multimode cables with MPO connectors)
 – 10x10MSA may have support issues.

• Parallel 10GE?
 – No single flow larger than 10G
 – Lots of cabling
 – If you require all the capacity, then any one of the optics failing in a bundle might mean you have to take the whole bundle down
Switched layer

- What do I mean by ‘switched layer?’
 - Something between the optical layer and the IP layer
 - Circuits
 - The things we had in X.25 before we binned them.
 - The things we had in ATM before we binned them.
 - The things we will forever reinvent.

- What will you be using it to provide?
 - Dedicated capacity circuits? How much capacity?
 - Is the fundamental statistically multiplexed aggregation layer of the network here or at IP?
 - ‘Pool of available bandwidth’

- Virtual networks
 - Network research
Switched layer

• Where should it be?
 – In the ROADMs?
 • OTN, ethernet?
 – Dedicated boxes?
 • Yet more rack space and power
 – In the routers?
 • EoMPLS

• The more places you build in switching capacity, the more layers you need a bandwidth overhead to provide it
• How many backbone routers?
 – Don’t want to carry traffic further than is necessary.
 – Don’t want to process the packet at lots of hops.
• How far out do you manage?
 – Options for collapsed CE/PE using virtualised functions?
• I don’t need to say IPv6, do I?
IP layer

- **Scaling**
 - Power, space
 - Vendors suggesting more boxes rather than always meeting demand with one box
• Content delivery
 – Lots of traffic comes from usual sources
 • Google, Akamai, Limelight, Netflix
 – House servers?
 • Netflix can serve several 30Gbps from a 1RU server
 • Can distribute them around network to reduce carrying traffic
 • Local nodes may be cheap/free, but ‘pay’ for power, rack space, time spent
 arranging broken servers to be replaced.
 – Do you need Google servers, Akamai servers, Limelight servers, Netflix servers?
 What about the next big CDN?
 – Just peer?
 • May not be available in all locations
 • Need to carry traffic around the network
 • Easy to add new peers
• ‘Cloud’ access and peering
IP layer

• QoS?
 – “You don’t need QoS if you build an adequate network” (Owen Delong commenting on “A reasonable discussion on Net Neutrality”)
 – If you’re preferring some traffic, that means you’re deprioritising everything else.
 – How do you do admission control fairly so only the VoIP traffic is prioritised, but it’s open to all VoIP providers?
 • Network neutrality
• Where does it fit in the wide-area network?
 – A tool for point-to-point circuits?
• Which layer?
• Testbed or more?
• Multi-domain SDN
 – East-west interfaces
Rapid provisioning of high bandwidth

- Capacity needs to be lit on the optical layer to use it at higher layers
 - Or at least sitting around…
 - Expensive pre-provisioning
 - May never be used
 - Who has the money?
 - Technology may be obsolete before it is used
 - Flexigrid and dynamic encoding may help here!
Automated provisioning

• **Know what you’re selling**
 – Bandwidth on demand? Or a circuit on demand?

• **Heterogeneous networks**
 – Vendor-specific solutions are bad
 – How much experience of network operations does your development team have?

• **Who is the user? How do we get to them?**
Network intelligence

• How smart should the network be?
• Historically, distributed control planes
 – BGP, LDP, OSPF, IS-IS.
• Towards more centralised control
 – SDN
 – MPLS-TE using centralised software to provision/route LSPs
• Is this a good thing?
 – Trust
 – Simplicity
Network monitoring

• Now you have your dark fibre, optical layer, switched layer, routed layer and automated circuit provisioning, how do you see what’s going on?
• Each layer may be from a different vendor.
• Expensive commercial tool
 – Does it do what you want?
• Open source
 – Will require customisation
 – Will require interface modules
 • Beware: for the optical equipment they may be expensive!
Questions, discussion…

Janet, Lumen House
Library Avenue, Harwell Oxford
Didcot, Oxfordshire

t: +44 (0) 1235 822200
f: +44 (0) 1235 822399
e: Service@ja.net