Federated Authorization
Implementing Grouper to federate user authorization

Andrea Biancini, (Maarten Kremers, Lalla Mantovani and Marco Malavolti)
Indianapolis, IN, USA, 10.29.2014
Agenda

- **Introduction**: authentication and authorization
- The **experimentations** using Grouper
- **Use cases** implemented
 - MediaWiki
 - Moodle
 - Custom application
- **Advantages** from different points of view:
 - **SP** point of view
 - **IdP** point of view
 - **Federation** point of view
- **Conclusions** and future works
Federations today

- Currently, the **goals** of an **Identity Federation** are:
 - give a delegated mechanism to **manage user identification** among different entities and within different subjects;
 - **provide a set of attributes** to an authenticated users to be used by the final application.

- We decided to **extend** the success of current identity federation **to the field of user authorization**.
 - This research has been supported by the European Commission. Within the FP7 programme the **GN3+ project** supported these activities with the specific **Joint Research Activity 3, Task 1**.
AuthN vs AuthZ

- **Authentication** is the act of confirming the truth of an attribute of a single piece of data or entity (the user of an application, for instance).

- **Authorization** is the function of specifying access rights to resources related to information security and computer security in general and to access control in particular.
 - More formally, “to authorize” is to define an access policy.
How to reach that goal?

Traditionally, identity federations have solved the authorization problems with two opposite approaches:
- **SP managed authorization**
- **IdP managed authorization**

A different approach may be followed (leveraging Attributes Authorities and implementing tools like Grouper) where **authorization is delegated to a specific system** designed for that purpose.
Tools

- We want to evaluate the introduction of Grouper for a cross/inter organizational use.

- Grouper will be used to manage in a centralized way (yet eventually permitting delegation):
 - Groups of users
 - Authorization attributes for users.
Proof of Concept

- To prove real use cases, three SPs will be integrated with Grouper in a Proof of Concept:
 - A **MediaWiki application**: Grouper will manage user groups for read/write access;
 - A **Moodle application**: Grouper will provide course list and manage students/teachers enrolment to courses;
 - A **custom application**: Grouper will provide user groups and other authorization attributes specific to the service.
MediaWiki

- This use case will require user groups and attributes to be retrieved **during the login phase**.
 - To give the user the correct access rights.
 - Using the **Attribute Authority** to add SAML attributes.
This use case will require groups and attributes to be retrieved during the login phase.

It will also require to have an “off-line” query from Moodle to Grouper.
- to obtain the list of courses (defined as groups in Grouper), the list of teachers and the list of students for every course.
- implemented in VOOT with a specific connector for Grouper.
VOOT Protocol

- VOOT is a protocol for **exchanging group information** externally to applications.

- Very simple API:

 Information about me

 `{BASE}/me`

 The groups that I am member of

 `{BASE}/me/Groups`

 Responds with a list *(ResourceList)* of group resources, where the role for the current user is embedded in the *vootRole* property.

 List of members of a group

 `{BASE}/Groups/{GROUPID}/members`

 Responds with a list *(ResourceList)* of role resources, where the user object is embedded.

 The role for a given combination of user and group.

 `{BASE}/Roles/{GROUPID}/{USERID}`

 Querying for public groups

 `{BASE}/Groups?search={SEARCH-TERM}`
Moodle integration Architecture

Grouper

Create new courses

Groups DB

Request users and groups

Moodle

Enrollment plugin

Courses and students DB

SAML Federation
Custom application

- The integration of a custom application permits:
 - on one hand, to **understand how** emerging **applications can be designed and modelled** to be fully compliant with the delegated authorization process introduced;
 - on the other hand, we can study **how to manage** directly **additional authorization attributes** for the users (and not only groups).
Advantages: externalizing from SP

- The process of managing authorization is **split into two main tasks:**
 - Authentication **attributes representation** and assignment to users: this task is completely externalized by the SP to Grouper;
 - Implementation of **allow or deny grants to functionalities** or resources: this task remains in the SP (or, better, in the application itself). The SP will leverage relevant authorization information retrieved from Grouper.
Advantages: no burden to IdPs

- The **authorization attributes** will be **managed** inside Grouper and thus **in a single point**.

- Inside Grouper the proper **delegation mechanism** can be implemented to permit each organization’s administrator to **deal only with the attributes of** his **interest**.

- This approach will **simplify** authorization management but at the same time will permit to **maintain full control** and **accountability** on user attributes.
Advantages: clear accountability

- The **delegation** will happen **in a clear and secure way** so that responsibilities are very clearly defined and attributed.

- The different subjects interacting in the authorization definition process must **rely on a reciprocal trust**, which is usually built at a federation level.

- The technical representation and exploitation of **authorization attributes** is **coherent with** the already defined **authentication process** (to simplify technical adoption of such a solution by all the participants to the federation).
1. **Study** *(started 03/2014):*
 - gaining knowledge on the tools and processes

2. **Feasibility** *(end 05/2014):*
 - introduction the context of authorization processes

3. **Design** *(end 09/2014):*
 - architectural design and description the technical choices

4. **Build** *(end 12/2014):*
 - realization of the PoC with the integration of the three SPs
Conclusion

- The **approach** described **proved to be effective** and paves the way to have it implemented as a real functionality into existing Identity Federations.
- This PoC permitted to **identify the key problems** and main aspects of realizing a central system for authorization.
- Future developments could be to **move** from the laboratory **to real production environments** in order to test on the field the robustness of the choices made.
Q&A