UHD (8K) Television Coverage of Large Sports Events in Brazil

Reliable International Media Transmission by Using Redundant Transmission and FEC

Hiroyuki Kimiyama

NTT Network Innovation Laboratories
Introduction

Unique global joint project:
- Public viewing of 2014 FIFA World Cup Brazil
 - Transmit 8K Super Hi-Vision (SHV) over IP network
 - Only fiber networks (not satellites)
 - Long distance transmission: 23,000km from Rio de Janeiro to Tokyo
 - Connecting southern and northern hemispheres
 - Using various shared networks with different characteristics

Challenge:
Transmitting live video over “Shared networks”
→ How to secure the reliability of video transmission in real time?
Overview of 8K PV System

- Compressed with NHK’s H.264 encoder and multiplexed into 280Mbps MPEG Transport Stream (TS)
- Encrypted by AES and added LDGM-FEC
- Transmitted as 300-Mbps UDP/IP real-time video stream
Reliability of Transmission over the World Wide Network

Challenge:
How to secure reliability of multi-domain network against IP packet loss, where the system consists of many heterogeneous elements?

Approaches:
We applied the following both two methods
- Forward error correction (FEC) mechanisms at application level
- Redundant transmission
 - If FEC could NOT recover lost packets
Basics of Forward Error Correction

- Calculate redundant (FEC) data from video data to transmit.
- Reconstruct the lost data of video from the received data.
 - For example, the data with 10% loss can be rescued by adding 10% redundant data preliminarily.
 - Ideally, we can do this, but quite difficult in practice.
Software Implementation of FireFort LDGM-FEC

- PC/Linux box for 8K-PV
 - Large block size against long burst loss
 - Up to 150,000 blocks, 20% redundancy
 - Tolerance for loss of >20,000 packet sequence
 - AES128 encryption, MMT packet format
 - Proxy-type implementation
 - Just inserted into IP connection of CODECs.

Diagram Details:

1. **SHV Encoder** connected to **2TS → IP**
2. **MMT Packet Transmission** with **Jitter** and **Packet Loss**
3. **Secure IP Terminator (TX)**
 - AES Encryption
 - LDGM-FEC Encode
 - MMT Packet TX
4. **Shared IP Networks**
5. **Secure IP Terminator (RX)**
 - MMT Packet RX
 - LDGM-FEC Decode
 - AES Dec
6. **IP → 2TS**
7. **SHV Decoder**

Key Technologies:

- **Real-time AES Encryption/Decryption**
- **Robust LDGM-FEC**
Redundant Transmission

- Transmit two 8K-video streams with FEC to recover from unexpected **long-term burst loss** caused by:
 - **Long-time disruption** by unscheduled maintenance
 - **Malfunction**, and **power outage** of network links and nodes
 - **Fiber cutoff**
Three transmission systems use the multi-path/single-path NW connections

- **FEC System A (Route #3 + #5):** Full-duplication of Networks & Nodes
- **FEC System B (Route #2 + #4):** Full-dup. of NWs, but common in Miami-node
- **FEC System C (Route #3 only):** Backup.
Summary

- Succeeded in 8K PV of 2014 World Cup Brazil
 - Keys to success:
 - Collaboration of R&E network organizations
 - High reliable IP transmission technology for shared networks
 - High reliable IP transmission technology based on:
 - High-efficiency LDGM-FEC
 - Redundant transmission with FEC
 - Configuration for redundant transmission
 - Designing multi-path network connections
UHD (8K) Television Coverage of Large Sports Events in Brazil

Reliable International Media Transmission by Using Redundant Transmission and FEC

Hiroyuki Kimiyama

NTT Network Innovation Laboratories